Congratulations to Roshan Kumar Vijendravarma (Courtier Lab) for this new article published with Pierre Leopold (Institut Curie) in Ecology and Evolution:
Non-visual cues and indirect strategies that enable discrimination of asymmetric mates
Abstract
The postulates of developmental instability–sexual selection hypothesis is intensely debated among evolutionary biologists, wherein despite a large amount of empirical data, evidence for or against it has been largely inconclusive. A key assumption of this hypothesis is that animals assess symmetry in potential mates as an indicator of genetic quality (developmental stability), and consequently use this information to discriminate against those with higher asymmetries while choosing mates. However, the perceptional basis that must underlie such discriminatory behavior (is symmetry a signal or is symmetry signaled) is not clearly defined. It is also argued that since asymmetry levels in natural populations are very low, the low signal-to-noise ratio would make accurate assessment of symmetry both difficult and costly. Rather than attempting to validate this hypothesis or even as to whether animals assess mate symmetry, this review simply aims to examine the plausibility that animals perceive symmetry (directly or indirectly) and consequently discriminate against asymmetric mates in response to perceived irregularities during courtship. For this, we review mate choice and courtship literature to identify potential sensory cues that might advertise asymmetry or lead to discrimination of asymmetric individuals. Although signaling associated with mate choice is commonly multimodal, previous studies on asymmetry have mainly focused on visual perception. In the light of a recent study (Vijendravarma et al., 2022, Proceedings of the National Academy of Sciences of the United States of America, 119, e2116136119), this review attempts to balance this bias by emphasizing on non-visual perception of asymmetry. In conclusion, we discuss the methodological challenges associated with testing the role of multimodal cues in detecting mate asymmetry, and highlight the importance of considering ecological, behavioral, and evolutionary aspects of animals while interpreting empirical data that test such hypothesis.